МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «Международный государственный экологический институт имени А.Д. Сахарова»

Белорусского государственного университета

Кафедра экологической медицины и радиобиологии

Толстая Е.В., Козелько Н.А., Аблековская О.Н.,

Основы диетотерапии. Продукты питания.

Методическое пособие к практическим занятиям по курсу

«Экологическая экспертиза. Медико-экологическая реабилитация и экспертиза»

Задание к практическому занятию:

Проанализировать состав продуктов питания по этикеткам.

Разработать продукт питания, обогащенный витаминами и минеральными веществами, с учетом их совместимости.

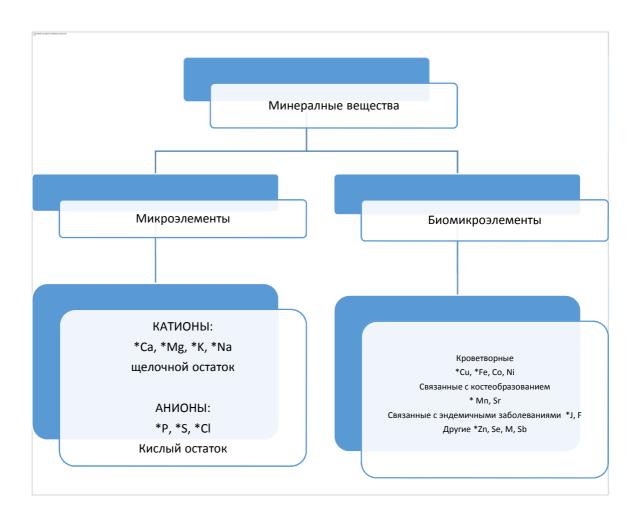
Дать оригинальное название.

Литература:

- **1.** Гогулан, М. Законы полноценного питания / М. Гогулан Ростов-на Дону: Прод-Пресс, 1999 600 с.
- **2.** Зубарь, Н.М. Физиология питания: Опорный конспект лекций / Н.М. Зубарь, В.И. Циприян,Ю.В. Руль М.: Киев нац торг-экон ун-т, 2003 201 с.
- 3. Лысиков, Ю.А. Основы нутрициологии. Часть II / Ю.А. Лысиков, П.В. Дружинин, А.Ф. Новиков М.: Nature's Sunshine Products, 2006. Xudong Ye., Salim Al-Babili, A. Klöti, Jing

Контрольные вопросы:

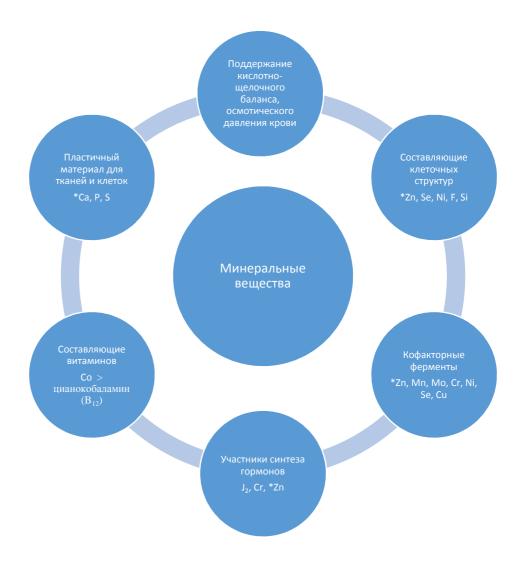
- 1. Состав продуктов питания.
- 2. На какие группы разделяют химические элементы в зависимости от их биологического значения?
 - 3. Что такое деминерализующие факторы?
- 4. Что такое антагонизм и синергизм витаминов? Приведите примеры.


Физиолого-гигиеническое значение минеральных веществ

В организме человека с помощью современных аналитических методов исследования обнаружено около 70 химических элементов. Эти элементы в зависимости от их биологического значения условно разделены на три группы:

- а) незаменимые элементы, входящие в состав ферментов, гормонов, витаминов B, K, H, Ca, P, C, S, CИ, A, MG Zn, Fe, Cu, I, Mn, V, Mo,
- б) постоянно присутствуют в организмах элементы, значение которых изучено еще недостаточно Sr, CD, F, Br, B, CИ, Cr, Be, Li, Ni, Cs, Cn, Al, Ba, Rb, Te, Ag,
- в) элементы, данные о количественном содержании в тканях, органах и физиологической роли, которых отсутствуют Tl, Nb, La, Pr, Sm, Tb, W, Re, Au

Минеральные вещества в зависимости от содержания в организме и пищевых продуктах подразделяются на:


- •макроэлементы (содержатся в животных и растительных тканях от целых процентов к их сотых долей (0,01);
- •биомикроэлементы (содержатся в животных и растительных тканях меньше тысячных долей процента (0,001)

Примечание * - Незаменимые минеральные вещества

Гигиенически значимая классификация минеральных веществ

Микроэлементы являются экзогенными химическими факторами, играющими значительную роль в таких жизненно важных процессах, как рост, размножение, кроветворение, клеточное дыхание, обмен веществ и других. Микроэлементы образуют с белками организма специфические металлоорганические комплексы, являются регуляторами биохимических реакций.

Примечание * - Незаменимые минеральные вещества

При нарушении соотношения микроэлементов в организме человека блокируются соответствующие процессы обмена и могут развиться клинические симптомы, главным образом связанные с нарушением функций ферментов, в составе которых они входят, или их активируют.

На современном этапе актуальность проблемы микроэлементов возросла в связи с загрязнением окружающей среды такими химическими элементами, как свинец, фтор, мышьяк, кадмий, ртуть, марганец, молибден, цинк и др. Токсические вещества в процессе технологической переработки с газообразными, жидкими и твердыми промышленными отходами попадают в атмосферный воздух, воду и почву, что способствует формированию в промышленных комплексах искусственных биогеохимических провинций.

Биогеохимические провинции — это области на поверхности Земли, различающиеся по содержанию в почвах, водах и осадочных отложениях

химических элементов или их соединений, с которыми связаны биогеохимические эндемии у растений, животных и человека. Известно более 30 химических элементов (литий, бор, углерод, азот, железо, магний, алюминий, кремний, фосфор, кальций и др.), по которым определяются биогеохимические провинции и аномальное содержание которых вызывает эндемии. В связи с этим возрастает содержание многих химических элементов в воздухе, почве, природных водах, организме животных и растений, которые используются населением как продукты питания.

Участие минеральных веществ в физиологических функциях

Физиологическая роль макроэлементов

КАЛЬЦИЙ (Са)

- Пластический материал для костей (~ 99% Ca содержится в костях, 1% в крови и тканях);
 - фактор свертывания крови;
 - поддерживает возбудимость нервной ткани и сокращения мышц;
 - нормализует деятельность сердца и мышц;
- входит в состав ядра и мембран клеток, клеточных и тканевых жидкостей;
 - поддерживает функции клеточных мембран;
 - активизирует ряд ферментов и гормонов;
- уменьшает процессы гниения и брожения в желудочно-кишечном тракте;
 - повышает сопротивляемость организма к негативному влиянию

Избыток кальция приводит к:

- кальциноза сосудов и тканей;
- образование камней в почках;
- преждевременному сращения родничка у младенцев

МАГНИЙ (Мg) – сосудорасширяющий, антиспазматический

- Участник всех ферментативных процессов;
- обеспечивает передачу нервных импульсов;
- снижает возбудимость нервной и мышечной систем;
- расширяет сосуды и снижает артериальное давление;
- стимулирует моторику кишечника и желчеотделение:
- участник белкового, углеводного и фосфорного обменов;
- снижает количество холестерина в крови

Дефицит магния приводит к:

- повышению сердечно-сосудистой заболеваемости (при постоянном использовании мягкой воды);
 - хронической почечной недостаточности;
 - квашиоркору у младенцев;
 - хроническому алкоголизма

ФОСФОР (Р)

- Участник всех процессов жизнедеятельности организма;
- особенно важная роль в деятельности головного мозга, скелетных и сердечных мышц, потовых желез;
 - обеспечивает генетическую функцию (РНК, ДНК);
 - участвует в обмене белков и жиров;
 - имеет антихолестериновое действие;
 - образует костный скелет в соединениях с Са и Мд

CEPA (S)

- входит в состав аминокислот (метионина, цистина)
- входит в состав витаминов (В₁, Н)
- гормонов (инсулин)
- желчи
- нервной ткани, кожи, костей, волос;
- имеет антитоксическое действие

XЛOP (Cl)

- Образует HCl в желудке;
- нормализует водный обмен в организме;
- поддерживает осмотическое давление в клетках и тканях;
- активирует пепсиноген и способствует перевариванию белков и всасыванию Fe;
 - снижает потоотделение;
 - обеспечивает соленый вкус пищи

Избыток поваренной соли

- повышает артериальное давление (увеличивается количество тканевой жидкости и плазмы крови)
- повышается осмотическое давление, увеличивается количество влаги в тканях;
 - поражаются почки, сердце и сосуды;
 - нарушается баланс между Na и К в сторону первого

Физиологическое значение биомикроэлементов

- В зависимости от концентрации микроэлементы проявляют физиологическую или фармакологическое действие:
- при поступлении микроэлементов в микроколичествах, которые характерны для организма, микроэлементы включаются в биохимические структуры и образуют высокоактивные вещества, которые стимулируют жизненно важные процессы организма (физиологическое действие);
- при поступлении микроэлементов в макроколичествах (дозированных фармакологически) происходит возбуждение защитной функции барьеров организма, а при чрезмерно повышенных концентрациях проявляется токсическое действие (фармакологическое действие).

Между микроэлементами и витаминами существует тесная взаимосвязь Процессы кроветворения регулируют витамин B_{12} и биомикроэлементы Fe, Cu, Co, Ni; костеобразования - витамин D и Ca, Cr, Mn; углеводный обмен - витамин B_1 и Mn

ЖЕЛЕЗО (Fe)

Железо преимущественно находится в крови - 55%, 24% - в скелетных мышцах, 21% - печени

Железо входит в состав гемоглобина и метгемоглобина и выполняет кроветворную функцию:

- ускоряет регенерацию крови и повышает в ней содержание гемоглобина и эритроцитов;
 - предотвращает эндемическим гипохромной анемии;
 - повышает общую сопротивляемость организма;
 - имеет антирадиационной действие;
- сохраняет аскорбиновую кислоту от разрушения и вывода. Железо входит в состав ферментов (цитохрома, пероксидазы, цитохромооксидазы) и выполняет каталитическую функцию:
 - участвует в питании и дыхании тканей;
 - поддерживает рост отдельных органов и организма в целом;
 - повышает сопротивляемость организма физической нагрузкой;
- принимает участие в детоксикации"кровяных"ядов (бензол, анилин, под) результате дефицита железа в рационе развивается анемия

При самолечении анемии или неконтролируемом искусственном введении легкоусвояемого железа (в фармсредствах, при переливании крови) есть риск развития гипермикроэлементоза железа:

- кожа приобретает землистый цвета;
- темнеет эмаль зубов

Причины дефицита железа в рационе:

- Рацион с недостаточным содержанием Fe;

Абсорбция Fe при:постгастрэктомии; болезнях тонкого кишечника;

Увеличение потерь железа при: избыточных менструальных потерях; хронической потере крови (носовые кровотечения, язвенная болезнь); увеличении количества гемоглобина в моче; операциях и травмах; паразитарной инфекции (малярия);

Увеличение потребности в Fe (беременность, лактация, рост и развитие ребенка).

Постоянный дефицит железа в рационе может вызвать: цирроз или жировое перерождение печени; снижение сопротивляемости организма; сокращение продолжительности жизни

МЕДЬ (Си)

Медь выполняет кроветворную функцию:

- участвует в синтезе гемоглобина;
- участник процесса преобразования железа в органически связанную форму;
- способствует переносу железа в костный мозг и образованию эритроцитов;
 - участвует в обезвреживании токсических веществ;
 - повышает устойчивость организма к вирусам и бактериям

Медь входит в состав ферментов (церулоплазмин, тирозиназы, аскорбиноксидазы, лактазы) и выполняет *каталитическую и гормональную функции*:

- участвует в дыхании тканей;
- в ионной форме катализирует окисление жирных кислот;
- участвует в обмене гормонов щитовидной железы;
- предотвращает адреналиновой гипергликемии, связанной с дефицитом инсулина

Дефицит меди вызывает изменения состава крови, поражается скелет и сердце

Избыток меди является токсичным, тормозит условно-рефлекторную деятельность

КОБАЛЬТ (Со)

Структурный элемент витамина B_{12} и физиологическую роль проявляет только в этой форме.

- стимулирует образование гемоглобина и эритроцитов;
- подавляет тканевое дыхание, особенно в опухолевой ткани;
- участвует в образовании инсулина;

• активирует костную и кишечную фосфатазу

•

Φ TOP (F)

Участвует в костеобразовании и формировании дентина и эмали зубов; нормализует фосфорно-кальциевый обмен;

- способствует нормальному развитию эмбриона и новорожденного ребенка;
 - ускоряет заживление костных переломов.

СЕЛЕН (Se)

- внутриклеточный антиокислитель
- является структурным элементом внутриклеточной антиоксидантной фактора;
- защищает внутренние мембраны клеток от перекисного окисления липидов;
 - предотвращает развитие некроза печени;
- в оптимальных количествах предотвращает опухолей половых органов и клеток;
 - предотвращает разрушение клеток сердечной мышцы

Дефицит селена вызывает риск сердечно-сосудистых, онкологических и инфекционных заболеваний

MAPΓAHEЦ (Mn)

- антиокислитель
- Участвует в оссификации и в формировании состояния костей;
- усиливает белковый обмен;
- активирует аэробное окисление углеводов;
- снижает количество недоокисленных продуктов в тканях;
- стимулирует образование крови;
- усиливает накопление аскорбиновой кислоты в тканях;
- предотвращает накопление жира в печени;

- нормализует репродуктивную функцию, действуя на эндокринные органы;
 - связан с обменом витаминов: B₁, C, D

ЦИНК (Zn)

Каталитическая и гормональная функции:

Входит в состав:

- инсулина;
- алкогольдегидрогеназы печени;
- ферментов, обеспечивающих процессы дыхания;
- участвует в построении карбогидразы и способствует выведению оксида углерода из организма;
 - участвует в синтезе триптофана;
- обеспечивает нормальные темпы полового развития, особенно юношей, и способствует репродуктивной функции

Кроветворной функции:

- входит в состав карбогидразы, которая содержится в эритроцитах

Липотропная функция:

- предотвращает жировое перерождение печени;
- предотвращает алкоголизма и его последствий (частично)

Другие физиологические действия

ускоряет всасывание аминокислот;

способствует быстрому заживлению ран;

снижает рН желудочного сока

При *дефиците цинка* развивается гипоцинкоза и *болезнь Прасада*. При гипоцинкоза проявляется:

- ночная слепота;
- снижение аппетита;
- плохое и длительное заживление ран;
- очаговое облысение;
- ухудшение обучения и задержка психического развития детей;
- задержка роста и полового созревания;

• воспаление кожи конечностей и слизистых оболочек полости рта, половых органов.

Болезнь Прасада - эндемия

- задержка роста и полового созревания;
- отсутствие вторичных половых признаков;
- низкая масса тела;
- сухость кожи;
- снижение аппетита, неправильные ощущения восприятия вкуса и запаха;
 - увеличение массы печени и селезенки

ЙОД (Ј)

Йод - структурный элемент гормонов щитовидной железы и обеспечивает ее нормальную функцию

Физиологическая роль йода опосредуется через биологическую роль тиреоидных гормонов:

- обеспечивает нормальное психическое развитие и эмоциональный статус человека;
 - способствует физическому развитию человека;
 - участвует в синтезе белков;
 - обеспечивает водно-солевой обмен;
 - повышает потребление кислорода тканями;
 - участвует в делении и дифференцировке всех клеток организма;
 - обеспечивает связь гипофиза и половых желез;
- поддерживает нормальную деятельность сердечно-сосудистой системы, печени;
 - обеспечивает иммунно-биологическую реактивность организма

Избыток органической формы йода в составе пищевых продуктов и патологии при этом не бывает Избыток тиреоидных гормонов нейтрализуется печенью.

Йодизм (неприятие йода) развивается при искусственной передозировке неорганической (ионной или элементарной) форм йода преимущественно неалиментарным путем.

Особенности усвоения минеральных веществ, основные источники и физиологические нормы их потребления:

Минеральные вещества являются неперевариемыми, особенно железо, кальций, магний

Усвояемость кальция составляет 10-30% улучшают усвоение Са:

- присутствие витамина Б и желчных кислот;
- кислую среду;
- высокое содержание белков, лактозы;
- оптимальное соотношение с P и Mg Ухудшают усвоения кальция:
 - пониженная кислотность желудочного сока;
- высокое содержание в пищевом рационе жиров, солей К, Mg, P, щавелевой кислоты и фитина

Усвояемость фосфора - 70% улучшают усвоение фосфора:

- высокое содержание белков;
- низкое содержание жиров

Кальций и фосфор хорошо усваиваются с животными продуктами, плохо - с растительными (фитин блокируют всасывание Ca и P).

При отношении Ca: Р 1:2 кальций и фосфор почти не усваиваются, так как образуются двух-, три основных нерастворимые в воде соли кальция и фосфорной кислоты

Усвояемость магния - 45-50% ухудшает усвоение:

- высокое содержание жиров, солей Р, Са;
- наличие фитин, клетчатки

Улучшают усвоение **магния** оптимальное соотношение с P, Ca, витамином Б и жиром Оптимальное соотношение кальция, магния и фосфора: Ca: Mg = 1: 0,5; Ca: P = 1: 1,5

Усвояемость железа 10-30% в двухвалентной форме улучшают усвоение железа:

- витамин С способствует переходу трехвалентного железа в двухвалентное;
 - соли кальция ухудшает усвоение железа:
 - пониженная кислотность желудочного сока;
- наличии в пищевом рационе фосфатов, щавелевой кислоты, фитина, танинов

Усвояемость железа:

- мяса, особенно телятины 17-21%;
- печени 10-20%;
- рыбы 9-11%; бобовых 5-7%;
- риса, шпината 1%

Медь легко усваивается, если связана с неорганическими кислотами, аминокислотами и низкомолекулярными белками

Усвояемость **цинка** зависит от прочности связи с белками и скорости их переваривания:

- с карбонатами цинк образует нерастворимые, а значит неусвояемые комплексы;
- усвоению цинка мешает медь, конкурируя за белок-носитель (металотионеин)

Усвояемость йода высокая, есть потери йода при:

- хранении пищевых продуктов в течение 3-6 месяцев 14-65%;
- при кипячении продуктов 100%;
- при других способах кулинарной обработки 22-60%

Основные источники минеральных веществ и физиологические нормы их потребления приведены в табл

Таблица основные источники и физиологические нормы потребления минеральных веществ (в 100 г продукта)

	Источники	Нормы
Ca	Твердый сыр (1400 мг), соя (348), петрушка	Взрослые 800 мг, дети
	(245), укроп (223), сыр (150), фасоль (150),	до 1200 мг в
	молоко (122)	соответствии возрасту

Mg	Арбуз (224), горох (107), фасоль (103),	400/350 мг
	пшено (101), гречка (98), рыба (50)	
Na, Cl	Поваренная соль	4-6 г. (10-15 NaCl)
K	Урюк (1781 мг.), соя (1607), фасоль (1100),	2,5/5 г.
	отруби (1260), изюм (860), чернослив (648),	
	картофель (568), абрикосы (305), томаты	
	(290)	
P	Соя (603 мг), твердый сыр (580), фасоль	Взрослые – 1600 мг.,
	(541), горох (329), рыба (280), хлеб и купы	дети – 1500-1800 мг.
	(200, 300), яйца (215)	
Fe	Свиная печень (20,2), говяжья печень (6,9),	10/18 мг., беременным
	сердце (4,8), геркулес (4,2), гречка (3,4),	женщинам – 25 мг.
	овощи, фрукты (600-1000)	
Cu	Говяжья печень (2010 мкг), гречка (899),	2 мкг.
	перловая крупа (840), пшено (790), горох	
	(761), арбузы (505), мука (447), почки (417),	
	фасоль (400).	
Co	Печень (2000), сельдь, морепродукты (40),	100-200 мкг.
	яичный желток (23), горох (15), бурак,	
	орехи (12,3).	
Mn	Раки (10 мг), мука (2,7), ржаной хлеб,	5-7 мг.
	гречка (1,5), фасоль (1,4), хрен, горох (1,3),	
	пшеничный хлеб (1,2)	
Mo	Гречка, бобовые, печень, яйца, хлеб с	150-500 мг.
	отрубями	
Zn	Печень (3230мкг), горох (2590), фасоль	15/12 мг
	(1800), говядина (1741), яйца (1690), почки	
	(1540), лук, чеснок (1273), гречка (1200).	
Ι	Яйца (60 мкг), молоко (45), лук (44), щавель	0,15 мг
	(39), капуста, морковь, картофель, печень	
	(35), морские водоросли	
		1

F	Чай (13,2), рыба (9). Вода, мясопродукты,	0,75 мг
	молочные продукты, яйца, в зависимости от	
	биогеохимической характеристики региона.	
Se	Дрожжи, хлеб, грибы (0,2-0,5 мг), чеснок,	70/50 мкг
	яйца, печень, рыба	

Деминерализующее факторы

Деминерализующие факторы - соединения, которые снижают адсорбцию минеральных компонентов пищи вследствие образования труднорастворимых, не усваиваемых компонентов при чрезмерном употреблении или нарушении баланса между минеральными веществами.

К ним относят щавелевую кислоту и ее соли (оксалаты), фитин (инозитолгексафосфорная кислота), таннины, некоторые балластные вещества, серосодержащие соединения крестоцветных культур и т. д.

Соли *щавелевой кислоты* широко распространены в продуктах растительного происхождения. Значительные количества щавелевой кислоты содержат некоторые овощи и в меньшей степени фрукты.

Щавелевая кислота в растительном сырье содержится в свободном и связанном состоянии. Попадая в организм, свободная щавелевая кислота связывает кальций, обедняя им организм. Деминерализующий эффект щавелевой кислоты обусловлен образованием практически не растворимых в воде соединений с солями кальция (1 часть по массе кальция связывается 2,2 частями щавелевой кислоты). Поэтому продукты, содержащие значительное количество щавелевой кислоты, способны резко снизить усвоение кальция в тонком кишечнике и даже послужить причиной тяжелых отравлений.

Влияние щавелевой кислоты на усвоение кальция в значительной степени зависит от содержания в каждом из продуктов кальция и оксалатов. С этой точки зрения, наиболее неблагоприятным эффектом обладают шпинат, портулак, листья свеклы, щавель, ревень, в которых содержание щавелевой кислоты примерно в 10 раз выше, чем кальция. Действие щавелевой кислоты на обмен кальция столь сильно, что она может обладать выявленной токсичностью: введение ее в количестве 2 % в корм кур,

например, часто приводит к их гибели. Описаны случаи смертельных отравлений людей от избыточного потребления продуктов, содержащих щавелевую кислоту в больших количествах. Смертельная доза щавелевой кислоты для взрослых людей колеблется от 5 до 15 г. Установлено, что интоксикация щавелевой кислотой проявляется в большей степени на фоне дефицита витамина D. Следует отметить, что щавелевая кислота угнетает также поступление кальция в организм из молока и молочных продуктов, служащих основным источником легкоусвояемого кальция. Несмотря на значительное содержание оксалатов в чае и какао, сравнительно небольшое их количество, которое потребляет население, позволяет отрицать скольконибудь существенную опасность их декальцинирующего эффекта.

Острая токсичность оксалатов проявляется в появлении разъедающего действия во рту и желудочно-кишечном тракте, которое иногда вызывает серьезное кровотечение. Отравление оксалатами сопровождается также поражением почек и судорогами.

Фитин, благодаря своему химическому строению, легко образует труднорастворимые комплексы с ионами кальция, магния, железа, цинка и меди. Этим объясняется его деминерализирующий эффект - способность адсорбцию металлов в кишечнике. Достаточно большое уменьшать количество фитина содержится в злаковых и бобовых: в пшенице, фасоли, горохе, кукурузе - около 400 мг/100 г, причем основная часть - в наружном слое зерна. Высокий уровень в злаках не представляет крайней опасности, так как содержащийся в зерне фермент способен расщеплять фитин. Полнота расщепления зависит от активности фермента, качества муки и технологии выпечки хлеба. Этот фермент работает при температуре до 70 °C, максимум активности - при рН 5,0-5,5 и 55 °C. Хлеб, выпеченный из рафинированной муки, в отличие от обычной муки практически не содержит фитина. В хлебе из ржаной муки его мало благодаря высокой активности фитазы. Отмечено, что декальцинирующий эффект фитина тем выше, чем меньше соотношение кальция и фосфора в продукте и ниже обеспеченность организма витамином D. Пути устранения влияния: тепловая обработка,

потребление продуктов переработки зерновых в пределах рекомендуемых норм.

Установлено, что усвояемость железа снижается в присутствии дубильных веществ чая, поскольку они образуют с ним хелатные соединения, которые не всасываются в тонком кишечнике. Такое воздействие дубильных веществ не распространяется на гемовое железо мяса, рыбы и яичного желтка. Неблагоприятное влияние дубильных и балластных соединений на усвояемость железа тормозится аскорбиновой кислотой, цистеином, кальцием, фосфором, что указывает на необходимость их совместного использования в рационе. Кофеин, содержащийся в кофе, активизирует выделение из организма кальция, магния, натрия, рядя других элементов, увеличивая тем самым потребность в них. Показано ингибирующее действие серосодержащих соединений на усвоение йода. Пути устранения влияния: умеренное потребление чая, кофе.

Для кальция являются щавелевая кислота, с которой он образует нерастворимые соли, которые оседают в виде камней в почках и суставах Фитин (соли фитиновой кислоты) и пищевые волокна снижая ют всасывание большинства минеральных веществ в кишечнике.

Важно поступление поваренной соли в организм Чрезмерное употребление поваренной соли:

- увеличивает количество тканевой жидкости и плазмы крови, повышает артериальное давление;
- повышает осмотическое давление, способствует образованию влаги в тканях;
 - нарушает баланс между Na и K в сторону первого

Наиболее уязвимыми системами от соли являются почки, сердце и сосуды. При употреблении поваренной соли нужно учесть, что удовлетворение потребности в соленом вкусе солью в нерастворимом виде в 3-4 раза выше, чем потребление соли. Важнейшим является внесение ионов хлора в слизистую желудка. Однако потребление соленых белковых продуктов выводит ионы хлора за пределы желудка.

Пути нормализация потребления соли

уменьшение потребления нерастворенной соли;

уменьшение потребления соленых белковых и овощных продуктов (тех, медленно отдают соль в кишечнике);

увеличение потребления источников калия;

использования заменителей соли и бессолевой продуктов (бессолевой хлеб, соевый бессолевой, но соленый соус)

Антагонизм и синергизм витаминов

Витамины - "незаменимые органические вещества, необходимые для поддержания жизненно важных функций организма, участвующие в регуляции биохимических и физиологических процессов", "биомолекулы с преимущественно регуляторными функциями, поступающие в организм с пищей", "незаменимые (эссенциальные) пищевые вещества, которые не образуются в организме или образуются в недостаточном количестве".

Итак, витамины - это чрезвычайно разнообразные по своему химическому строению вещества, играющие исключительно важную роль в обмене веществ. Как правило, витамины не синтезируются в организме человека. Часть витаминов синтезируется кишечной микрофлорой или образуются в количествах, недостаточных для обеспечения нормальной работы организма человека, поэтому они должны регулярно поступать с пищей или и виде БАД.

В отличие от других незаменимых пищевых веществ (аминокислот, полиненасыщенных жирных кислот, углеводов), витамины не являются пластическим материалом или источником энергии. Их основные функции сводятся к участию в работе биокатализаторов (в качестве коферментов), участию в регуляции (в качестве гормоноподобных соединений), подавлению образования свободных радикалов. Каждый витамин выполняет присущую только ему специфическую функцию и не может быть заменен другим веществом. Если в организме не хватает какого-либо витамина, всегда возникают сбои или более серьезные нарушения в обмене веществ, что приводит к заболеваниям, причина которых обусловлена витаминной недостаточностью.

Организму требуется очень незначительное количество ЭТИХ биологически активных веществ - от нескольких десятков миллиграмм до нескольких микрограмм в день (исключение составляет витамин С, порядок больше). Причем, необходимы которого необходимо на одновременно все витамины. В идеале наше питание должно быть разнообразно и насыщено различными витаминами. Но не существует "идеально" сбалансированной пищи, в которой присутствовали бы все группы витаминов в необходимом количестве. Дефицит витаминов в питании, в той или иной степени - это объективная реальность питания современного человека, которая проявляется независимо от качества и количества потребляемой пищи.

Классификация витаминов

Классифицировать витамины по химической структуре невозможно - настолько они разнообразны и относятся к самым разным классам химических соединений. Однако их можно разделить по растворимости: на жирорастворимые и водорастворимые.

К жирорастворимым витаминам относят 4 витамина: витамин A (ретинол), витамин D (кальциферол), витамин E (токоферол), витамин K, а также каротиноиды, часть из которых является провитамином A. Но холестерин и его производные (7-дегидрохолесторол) также можно отнести к провитамину D.

К водорастворимым витаминам относят 9 витаминов: витамин В1 (тиамин), витамин В2 (рибофлавин), витамин В5 (пантотеновая кислота), витамин РР (ниацин, никотиновая кислота), витамин В6, (пиридоксин), витамин В9 (витамин Вс, фолиевая кислота), витамин В12 (кобаламин) и витамин С (аскорбиновая кислота), витамин Н (биотин)

Классификация витаминов

Официально е название	Синоним	Форма витамина	Уровень потреблени я	Адекватный уровень потребления *
Жирорастворі	імые витамин	ы		
ретинол	витамин А	две формы	МГ	1,0
каротиноиды		семейство	МГ	15,0**
кальциферол	витамин D	семейство	МКГ	5,0*
токоферол	витамин Е	семейство	МΓ	15
нафтохинон	витамин К	две формы	МКГ	120***
Водораствори	мые витамині	ы		
тиамин	витамин В1	моносоединени е	МГ	1,7
рибофлавин	витамин В2, лактофлави н	две формы	МГ	2,0
никотиновая кислота	витамин В3, РР, ниацин	две формы	МГ	20
пантотеновая кислота	витамин В5	моносоединени е	МГ	5,0
пиридоксин	витамин В6	семейство	МΓ	2,0
фолиевая кислота	витамин B9, Вс	семейство	мкг	400
кобаламин	витамин В12	семейство	мкг	3,0
аскорбиновая кислота	витамин С	моносоединени е	МГ	70
биотин	витамин Н	моносоединени е	МКГ	50

При сбалансированном питании и естественном поступлении в организм витаминов, ни о каком отрицательном взаимном влиянии витаминов не может быть и речи. Проблема может возникнуть лишь в том случае, когда применяются достаточно большие терапевтические дозы отдельных витаминов. В этом случае возможно возникновение положительных или отрицательных взаимодействий витаминов между собой и их влияние на другие пищевые вещества, например, на макро- и микроэлементы. Например, высокие количества меди разрушают витамин С.

Установлено, что увеличение дозы вводимого витамина С повышает потребность организма в рибофлавине. В свою очередь, при недостатке в пище рибофлавина снижается содержание в организме витамина С и тиамина.

ПОЛОЖИТЕЛЬНОЕ ВЛИЯНИЕ

Витамин А - Витамин В12

Витамин A - Витамин D

Витамин А - Витамин К

Витамин С - Витамин В12

Витамин В1 - Витамин В6

ОТРИЦАТЕЛЬНОЕ ВЛИЯНИЕ

Витамин В2 - Витамин К

Витамин В5 - Витамин В12

Витамин В2 - Витамин В6

Витамин В6 - Витамин В12

Витамин С - Ниацин

vit. Cvit. B_2 vit. B_2 vit. B_2 vit. B_2 vit. B_2 vit. Evit. B_{12} vit. B_6 vit. B_6 vit. Evit. Kvit. B_{12} vit. B_{12} vit. B_{12} vit. CCuvit. B_{12} vit. B_6 vit. B_6 Cuvit. B_{12} vit. B_6 caCuvit. B_{12} vit. B_6 caFevit. B_{12} vit. B_6 cuCaFevit. B_6 cuCaMgvit. A caCaMgvit. A caCaMgvit. A caCaMgvit. A caCaMgvit. A caCaMgvit. A caFeMgcavit. A caFeThevit. A cavit. A	Отрицательное взаимодействие	Положительное взаимодействие
vit. Dvit. Evit. B1vit. B2vit. B6vit. B2vit. B12vit. B2vit. B2vit. B2vit. Cvit. B12vit. B2vit. B2vit. B2vit. Cvit. B12vit. B6vit. B3vit. Evit. B12vit. B6vit. B3vit. CCuvit. B12vit. B12vit. B12vit. CCuvit. B12vit. B12vit. B12vit. EFevit. B12vit. B6CaCuvit. B12vit. B6Cavit. B6Cuvit. B12vit. B6CaFevit. B12vit. B6CaCaFevit. B12vit. B6CaCaFevit. B12vit. Cavit. B6CaCaMgvit. ATaTaCaMgvit. ATaTaCaMgvit. ATaTaCaMgvit. Cavit. Cavit. CaFeMgCavit. Cavit. CaFeMgCavit. Cavit. CaFeMgCavit. Cavit. CaFeMgCavit. Cavit. CaFeMgCavit. Cavit. CaFeMgCavit. Cavit. Cavit. CaFeMgCavit. Cavit. Cavit. Cavit. CaFeMgCavit. Cavit. Cavit. Cavit. Cavit. CaFeMg <td< td=""><td>vit. A vit. B₁₂</td><td>vit. A 🛶 vit. E</td></td<>	vit. A vit. B ₁₂	vit. A 🛶 vit. E
vit. B_2 vit. B_1 vit. B_2 vit. B_2 vit. B_1 vit. B_2 vit. B_2 vit. B_2 vit. C vit. B_1 vit. B_2 vit. B_2 vit. C vit. B_{12} vit. B_2 vit. B_2 vit. C vit. B_1 vit. B_2 vit. B_3 vit. C <td>vit. A vit. K</td> <td></td>	vit. A vit. K	
vit. B_3 vit. B_{12} vit. B_2 </td <td>vit. D 💝 vit. E</td> <td>vit. A vit. C</td>	vit. D 💝 vit. E	vit. A vit. C
vit. B_3 vit. B_{12} vit. B_2 vit. B_2 vit. B_2 vit. C vit. B_2 vit. B_2 vit. B_2 vit. B_2 vit. C vit. B_{12} vit. B_6 vit. C vit.	vit. B ₂ vit. B ₁	vit. B ₂ vit. B ₆
vit. Cvit. B_2 vit. B_2 vit. B_2 vit. B_2 vit. B_2 vit. Evit. B_{12} vit. B_6 vit. B_6 vit. Evit. Kvit. B_{12} vit. B_{12} vit. B_{12} vit. CCuvit. B_{12} vit. B_6 vit. B_6 Cuvit. B_{12} vit. B_6 caCuvit. B_{12} vit. B_6 caFevit. B_{12} vit. B_6 cuCaFevit. B_6 cuCaMgvit. A caCaMgvit. A caCaMgvit. A caCaMgvit. A caCaMgvit. A caCaMgvit. A caFeMgcavit. A caFeThevit. A cavit. A	vit. B ₃ vit. B ₁₂	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	vit. B ₁₂ vit. B ₁	vit. B ₂ \longrightarrow vit. B ₉
vit. C vit. B_{12} vit. B_{6} vit. B_{5} vit. C vit. C vit. C vit. C vit. C vit. C Cuvit. C vit. C vit. C vit. C vit. C vit. C vit. C Cuvit. C vit. C vit. C vit. C CaFevit. C vit. C vit. C vit. C CaMgvit. C vit. C vit. C vit. C CaMgvit. C vit. C vit. C vit. C vit. C CaMgvit. C vit. C vit. C vit. C vit. C vit. C FeMgvit. C vit.	vit. C vit. B ₂	vit Ro → vit K
vit. E vit. K vit. B_9 Znvit. C Cuvit. C vit. B_{12} vit. E vit. C Cuvit. B_{12} Cuvit. B_{12} Fevit. B_{12} Mnvit. B_{12} Vit. B_6 CuCaFeCaMgCaMgCaMgCaVit. C FeCrFeMgFeMgFeMgFeMgFeMgFeMgFeMgFeMgFeMgFeMgFeMgFeMgFeMgFeMgFeMgFeMgFeVit. C FeMgFeVit. C FeVit. C Fe <td>vit. C vit. B₁₂</td> <td>VIC. D2 TVIC. K</td>	vit. C vit. B ₁₂	VIC. D2 TVIC. K
vit. B_9 Znvit. B_{12} vit. B_{12} vit. C Cuvit. B_{12} vit. C vit. C Cuvit. C vit. C vit. C vit. C Fevit. C vit. C vit. C vit. C Fevit. C vit. C vit. C vit. C CaFevit. C vit. C vit. C CaFevit. C vit. C vit. C CaMgvit. C vit. C vit. C CaMgvit. C vit. C vit. C FeCrvit. C vit. C vit. C FeMg C vit. C vit. C FeThe contraction of C vit. C vit. C vit. C	vit. E 📥 vit. B ₁₂	vit. B ₆ → vit. B ₃
vit. BgZnvit. CCuvit. B_{12} vit. C vit. C Cuvit. C vit. C vit. C Cuvit. C vit. C vit. C Fevit. C vit. C vit. C Fevit. C vit. C vit. C CaFevit. C vit. C CaMnvit. C vit. C CaMnvit. C vit. C FeCrvit. C vit. C FeMnvit. C vit. C FeMn C vit. C FeMn C C vit. C FeMn C C C Fe C <tr< td=""><td>vit. E 🚅 vit. K</td><td></td></tr<>	vit. E 🚅 vit. K	
vit. EFeCuvit. B5Cuvit. B12Fevit. B12Mnvit. B12CaFeCaMgCaMnCaVit. DCaCaFeCrFeMgCaMgCaCaFeCrFeMgFeMgFeMnFeMnFeMnFeMnFeMnFeMnFeMnFeTrFeTrFeTrFeTrFeTrFeTr<	vit. B ₉ Zn	VII. B ₁₂ VII. B ₅
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vit. C 🚅 Cu	vit. B₁2 → vit. B9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	vit. E 🚗 Fe	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu 📥 vit. B ₅	vit. C vit. E
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu vit. B ₁₂	vit. Bs Ca
Ca Fe vit. A Zn Ca Mn vit. D Ca Ca Zn vit. K Ca Fe Cr Ca vit. K Ca Fe Mn Ca vit. B Fe Mn Fe vit. B	Fe vit. B ₁₂	
Ca Mg Ca Mn Vit. A Zn Vit. B	Mn vit. B ₁₂	vit. B ₆ → Cu
Ca	Ca 🚅 Fe	vit A → Zn
Ca Zn vit. K Ca Fe Mg Ca vit. Bg Fe Mn Fe Zn Fe vit. Bg	Ca 📥 Mg	7 211
Fe Cr Fe Mg Fe Mn Fe Zn Fe vit. K Ca Vit. K Ca Vit. K Ca Vit. B	Ca 🚣 Mn	vit. D 🛶 Ca
Fe — Cr Fe — Mg Fe — Mn Fe — Zn Fe — vit. B ₃	Ca Zn	uit K → Co
Fe — Mn Fe — Zn Fe — vit. B ₃	Fe Cr	VII. K - Ca
Fe → Zn Fe → vit. B ₃	Fe - Mg	Ca → vit. B ₁₂
re 2n	Fe ←→ Mn	_
Mn - Cu Se - vit F	Fe ← Zn	Fe → vit. B ₃
1 00 VIL. E	Mn ←→ Cu	Se → vit. E
Zn - Cr	Zn 🚅 Cr	